Jia L. Song, Ph.D.


BISC 615 Developmental Biology

Research Interests

Sea urchins induced to shed gametes. Sperms are white and eggs are yellow.

The potential for forming a new organism begins at fertilization, when the sperm meets the egg. Across species from the worm to the human, development of the newly fertilized egg to a juvenile or an adult requires the careful regulation of cell growth, differentiation, and morphogenesis. Different cell types make different sets of proteins, even when their genomes are identical. What makes each cell type unique is a direct result of differential gene expressions mediated by transcription factors and signaling molecules in response to chemicals and proteins in the cell and the environment. Dysregulation of important genes involved in developmental decisions can lead to human diseases. Our research addresses one of the key questions in developmental biology: How are genes regulated during early development?

To examine gene regulations in early development, we use the invertebrate sea urchin as a model organism. Since sea urchins belong to a sister group of chordates, their developmental processes have much in common with vertebrates and can provide invaluable information towards understanding the basic regulatory mechanisms underlying vertebrate development. The advantages of using these marine invertebrates to study early development are that millions of eggs or sperms are obtained from a single sea urchin (Fig.1), the developing sea urchin embryos are synchronous, transparent and easy to culture in the laboratory, they have a relatively simple body plan, and they are amenable to experimental manipulations.

Current Projects

  • Analyze the regulatory roles of small RNAs on early development - Small RNAs, such as microRNAs, have been found to modulate the expression of thousands of genes that are involved in a broad range of biological processes, including cell proliferation and differentiation, apoptosis and metabolism, and development. We hypothesize that microRNAs regulate gene targets important for developmental pathways. Using morpholino antisense oligonucleotides to knockdown microRNA processing enzymes such as Dicer and Drosha,  we observed a range of morphological defects, suggesting the importance of microRNAs in regulating early developmental processes. We are taking an interdisciplinary approach using computational, proteomic, and experimental methods to identify and characterize microRNA targets that are important for early development.
  • Understand the regulation of genes essential for germ line differentiation - Genes essential for egg/sperm determination have been identified, but little is known about how they are regulated. Many of these genes such as Nanos (translational repressor), Vasa(translational activator), and Piwi (argonaute family member) are also involved in maintaining multipotency. We are interested in understanding how these genes are regulated at the transcriptional and post‐transcriptional levels.

Research Group


  • Nadezda Stepicheva - Ph.D. student
  • Priya Nigam - MS student
  • Santiago Suarez - MS student
  • Priscilla Ahiakonu - MS student
  • Kelsie Landis - Undergraduate Researcher
  • Carissa McKinney - Undergraduate Researcher
  •    Tylor McCann-Undergraduate Researcher
  • McKenzie Cullota-Undergraduate Researcher


  • Archana Siddam -MS student.
  • Undergraduate researcher with Honors Thesis: Lydia Bonar and Megan Dumas*

Selected Publications

Assistant Professor

Phone: (302) 831-2794

Fax: (302) 831-2281

Email: jsong@udel.edu

Office: 323 Wolf Hall

Lab: 018 Wolf Hall

Department of Biological Sciences
Wolf Hall
University of Delaware
Newark, DE 19716


  • B.S. - Cornell University
  • Ph.D. - University of Washington
  • Postdoctoral - Brown University