E. Fidelma Boyd, Ph.D.

Teaching

BISC 682 Molecular Mechanisms of Pathogens
BISC 850 Advanced Topics in Microbiology

Research Interests

Vibrio parahaemolyticus a halophile with diverse traits
Vibrio parahaemolyticus is a halophile and salt is an absolute requirement for growth. How this species is adapted to high salt tolerance whereas sister species are not is unclear. We identified in the genome several osmotolerance systems including two compatible solute synthesis systems for ectoine and glycine betaine (Boyd et al., 2008; Naughton et al., 2009). Our data show that growth at moderate and high salinity compared to low salinity protects at low pH (Whitaker et al., 2010; Kalburge et al., 2014). We demonstrated that only the ectoine synthesis system but not the glycine betaine synthesis system is essential for fitness and survival at high salinity under low nutrient conditions (Ongagna-Yhombi and Boyd, 2013). Of the four different Betaine Carnitine Choline Transporter (BCCT) compatible solute transporters present in V. parahaemolyticus, BCCT1 (ORF VC1456) has the most diverse substrate range (Ongagna-Yhombi, McDonald, and Boyd., 2015). Our more recent work indicates that the ectoine and betaine synthesis systems are under different regulatory control and that the quorum sensing regulators are involved in both ectoine and betaine biosynthesis (Gregory, G., unpublished data).

Vibrio parahaemolyticus is the leading cause of bacterial seafood borne gastroenteritis worldwide. Our group developed a new in vivo adult mouse colonization model that allows us for the first time to determine the bacterial factors required for host colonization. Using this model we identified a number of global regulators important for in vivo survival (Whitaker et al., 2012, Whitaker et al., 2014, Haines-Menges et al, 2014). We determind that the Vibrio specifc ToxRS regulator is essential for colonization through its regulation of the porin OmpU and its role in stress tolerance (Whitaker et al., 2012). Similarly, the cell envelope stress response sigma factor RpoE is essential for in vivo survival (Haines-Menges et al., 2014). In contrast, our examination of mutants deficient in the sigma factors RpoN, FliAP or FliAL showed that they were superior colonizer compared to the wild-type strain. The superior colonization phenotype appears correlates to a faster growth rate on intestinal mucus as well as individual components of mucus (Whitaker, et al., 2014). More recent studies show that quorum sensing regulators affect cell metabolism that is important for in in vivo fitness. In this work, we demonstrate the role of OpaR a master quorum sensing output regulator by demonstrating binding to numerous regulatory region in metabolism and transporter genes. This work demonstrates that quorum sensing regulation is required for in vivo colonization and cell metabolism (Kalburge et al, 2017). 

Vibrio cholerae, the causative agent of the dreaded diarrheal disease cholera

For cholera infection, two virulence factors are indispensable; cholera toxin and the toxin corregulated pilus, and both are encoded on mobile and integrative gentic elements (MIGEs); the filamentous phage CTXphi and the TCP island or Vibrio Pathogenicity Island (VPI), respectively. My group identified a second pathogenicity island named VPI-2, which is present among all pathogenic isolates (Jermyn and Boyd, 2002, 2005). VPI-2 encodes the genes required for sialic acid scavenaging (nanH), uptake (siaPQM) and catabolism (nanA, nanEK, nagA) (Jermyn and Boyd, 2002, 2005, Almagro-Moreno and Boyd, 2009a). Sialidase encoded by nanH cleaves terminal sialic acid, a nine carbon backbone monosaccharide present on all cell surfaces, from cell surface glycans. In the intestinal mucin, sialidase converts host sialoglycans to GM1 gangliosides, the cell receptors for CT, with the release of free sialic acid that can be taken up and catabolized as a sole carbon and nitrogen source by V. cholerae (Almagro-Moreno and Boyd, 2009a). We demonstrated that the TRAP transporter SiaPQM (VC1777-VC1779) is the sole sialic acid transporter present in V. cholerae (Chowdhury et al., 2012). One of our research goals is to demonstrate that host specific nutrients such as sialic acids are essential for V. cholerae growth and survival in vivo (McDonald et al., 2016).

Pathogenicity islands are large chromosomal regions acquired by a pathogenic strains within a species. We are examining the mechanisms of excision and integration of VPI-1 and VPI-2 and the role of island-encoded and host-encoded factors play in these functions. We demonstrated that VPI-2 can excise from the genome and a form circular intermediate and this is catalyzed by an integrase and excisionase encoded within VPI-2 (Murphy and Boyd, 2008; Almagro-Moreno et al., 2010).  Our data suggests that there is cross talk between different islands in V. cholerae and this communication is mediated by both interases and RDFs/excisionases (Carpenter et al., 2016). Analysis of the recombination module (integrases, attachment sites att) within islands indicates that these modules in different strains and species can contain novel cargo genes such as CRISPR-Cas systems and contact dependent secretion systems (Carpenter et al., 2017). 

Vibrio vulnificus a marine bacterium and opportunistic pathogen of humans

Vibrio vulnificus can both catabolize and synthesize sialic acid.  Only clinical isolates can catabolize sialic acid and these isolates encode a single transporter for sialic acid uptake similar to that found in V. cholerae (Lubin et al, 2012). All isolates appear to be capable of sialic acid biosynthesis.  The two sequenced strains of V. vulnificus encode highly divergent sialic acid biosynthesis neu/nab genes and we have shown that the two strains produce different amounts of sialic acid (Lewis et al., 2011).  Also it appears that V. vulnificus can synthesize different types of sialic acid (Lewis et al., 2011). Our more recent studies have shown that decoration of the bacterial surface promotes bloodstream survival of this species (Lubin et al., 2015). We are investigating the type of sialic acid produced by V. vulnificus and the surface structure(s) that is decorated with this compound (McDonald, N. unpublished data).

 

Research Group

Joe Borowski, B.S., -M.S. Graduate student program, (B.S. University of Delaware), Diversity and evolution of CRISPR-Cas systems in Vibrio species

Gwendolyn Gregory, B.S., -Ph.D/M.B.A. Graduate student program, (B.S.), Osmotic tolerance regulation

Sai Siddarth Kalburge, B.S. -Ph.D/M.B.A. Graduate student program, (B.S. Viswesvaraya Technological University, India), Vibrio parahaemolyticus quorum sensing regulators LuxO, OpaR and AphA functions.

Nathan McDonald, B.S., Ph.D./M.B.A. Graduate student in Chemistry Biology Interface Program, (B.S. University of Delaware).  Sialic acid and sialic acid-like molecules in Vibrio species

Abish Regmi, B.S.Ph.D./M.B.A. Graduate student (B.S. Towson State University). Vibrio parahaemolyticus carbohydrate utilization and metabolic fitness

Maria Limmina, Undergraduate Researcher, University of Delaware

Daniel Morreale, Undergraduate Researcher, University of Delaware

Selected Publications

Regmi, A., Kalburge, S.S., Whitaker, W.B., and E.F. Boyd. 2017. Genomic and phenotypic comparisons among Vibrio parahaemolyticus  isolates uncover diverse carbohydrate utilization patterns . In Preparation.

Richards, G.P., M. A. Watson, D. S. Needleman, J. Uknalis, E. F. Boyd, and J. P. Fay. 2017. Mechanisms for Pseudoalteromonas piscicida-induced killing of Vibrios and other bacterial pathogens. Applied and Environmental Microbiology, In Revision.

Carpenter, M.R., Kalburge, S.S., Borowski, M.R. Peters, R.R. Colwell, and E.F. Boyd. 2017. CRISPR-Cas and contact dependent secretion systems on excisable pathogencity islands with conserved recombination modules. J. Bacteriology, In Press.

Kalburge, S.S., Carpenter, M.R., Rozovsky, S., and E.F. Boyd. 2017. Quorum sensing regulators required for metabolic fitness in Vibrio parahaemolyticus. Infection and Immunity, In Press.

McDonald, N.D., J.B. Lubin, N.Chowdhury, and E.F. Boyd.  2016. Host-derived sailic acids are an important nutrient source required for opitimal bacterial fitness in vivo. MBio. 2016 Apr 12;7(2):e02237-15.

Carpenter, M.R., Rozovsky, S., and E.F. Boyd. 2016. Pathogenicity island cross-talk mediated by recombination directionality factors can facilitate excision and spread of virulence genes in bacteria. J. Bacteriol. 14;198(5):766-76   

Lubin, J.B., W.G. Lewis, N.M Gilbert, S. Almagro-Moreno, E.F. Boyd, and A.L. Lewis. 2015. Host-like carbohydrates promote bloodstream survival of Vibrio vulnificus in vivo. Infection and Immunity. 10.1128/IAI.00345-15.

Boyd, E.F., M.R. Carpenter, N. Chowdhury, A.L. Cohen, B.L. Haines-Menges, J.J. Kingston, S. S. Kalburge, J.B. Lubin, S.Y. Ongagna-Yhombi, and W.B. Whitaker. 2015. Postgenomic analysis of the evolutionary history of Vibrio.  Microbiology Spectrum, In Press.

Ongagna-Yhombi, S.Y., N.D. McDonald, and E.F. Boyd. 2015. Deciphering the role of multiple betaine choline carnitine transporters in the halophile Vibrio parahaemolyticus. Applied and Environmental Microbiology, 81(1):351-63.

Haines-Menges, B.L., Whitaker, W.B., J.B. Lubin, and E.F. Boyd. 2015. Host Sialic Acids: A delicacy for the pathogen with discerning taste. In Metabolism and Bacterial Virulence. Edited T. Conway and P. Cohen, ASM Press. Microbiology Spectrum.

Haines-Menges, B.L., Whitaker, W.B., and E.F. Boyd. 2014. The alternative sigma factor RpoE is essential for Vibrio parahaemolyticus cell envelope stress response and intestinal colonization. Infection and Immunity, 82:3667-77.

 

Professor

Phone: (302) 831-1088

Fax: (302) 831-2281

Email: fboyd@udel.edu

Office: 328 Wolf Hall

Lab: 353 Wolf Hall

Address:
Department of Biological Sciences
Wolf Hall
University of Delaware
Newark, DE 19716

Education

  • B.S., Ph.D. - National University of Ireland (Galway, Ireland)
  • Postdoctoral - The Pennsylvania State University
  • Postdoctoral - Harvard University
  • Postdoctoral - Tufts University School of Medicine