| 306 | Austin B. Keeler, Ph.D. | <p>​Assistant Professor, Biological Sciences<br><br></p> | (302) 553-7934 | | abkeeler@udel.edu | 227 15 Innovation Way (Old DBI) | | | <p>​B.S. - The College of William and Mary<br>Ph.D. - The University of Iowa<br>Postdoctoral - The University of Virginia<br><br></p> | | <p>​<strong>Neurodevelopment of somatosensory (pain, temperature, and touch) systems. </strong>Appreciating a hot coffee requires cycles of neurodevelopmental construction, destruction, and refinement (building neurons, circuits, and synapses) to build the neural systems to feel the hot, smooth cup, take a sip, and taste the bitter, nutty flavor. What does it take to build a functioning brain, then? How does a brain grow to make sure each neuron knows what its job is? For instance, to detect the heat of the mug, the smoothness of the ceramic surface, or the weight of the mug in hand?<br><br></p> | <p>​1) Use large, high dimensional, protein based, single cell experiments (mass cytometry) to understand how neurons know what kind of neuron to become during development. In other words, what factors culminate ​​​in driving an immature neuron into a particular fate that makes them a "pain" or "touch" neuron? </p><p class="p2" style="margin-bottom:0px;font-feature-settings:normal;font-stretch:normal;font-size:12px;line-height:normal;font-family:arial;color:#1a1a1a;background-color:#ffffff;min-height:14px;"><br></p><p>2) Extracellular vesicles (EVs) are nanoscale particles that seemingly all cells produce for diverse purposes. During development, peripheral neurons produce molecularly diverse EVs but their function, especially between molecular types, is poorly understood. We characterize EVs produced by soma​tosensory neurons in development and adulthood with a focus on the formation, maintenance, and dysfunction of pain, temperature, and touch neurons.</p><p class="p2" style="margin-bottom:0px;font-feature-settings:normal;font-stretch:normal;font-size:12px;line-height:normal;font-family:arial;color:#1a1a1a;background-color:#ffffff;min-height:14px;"><br></p><p>3) In collaboration with Jason Lim (also Biological Sciences), we molecula​rly profile peripheral neurons and their axonal arbors that innervate knee and temporomandibular joints in health and during osteoarthritis.</p><p class="p2" style="margin-bottom:0px;font-feature-settings:normal;font-stretch:normal;font-size:12px;line-height:normal;font-family:arial;color:#1a1a1a;background-color:#ffffff;min-height:14px;"><br></p><p>4) Build a novel neural activity imaging platform to investigate how pain detection becomes encoded in sensory circuits.​<br><br></p> | <p>​<span class="s1" style="text-decoration-line:underline;"><a href="https://keelerlab.bio.udel.edu/people/">https://keelerlab.bio.udel.edu/people/</a></span><br></p> | <p>​1. Vradenburgh S.A., Van Deusen A.L., Beachum A.N., Moats J.M., Hirt A.K., Deppmann C.D, <strong>Keeler A.B.*</strong>, and Zunder E.R.*. (2023) Sexual dimorphism in the dorsal root ganglia of neonatal mice identified by protein expression profiling with single-cell mass cytometry. Mol Cell Neurosci.​</p><p>2. Mason A.J., <strong>Keeler A.B.</strong>, Kabir F., Winckler B., Deppmann C.D. (2023) Sympathetic neurons secrete retrogradely transported TrkA on extracellular vesicles. Sci Rep. Mar 4;13(1):3657.<br></p><p>3. <strong>Keeler A.*</strong>, Van Deusen A.*, Gadani, I., Williams C., Goggin S., Hirt. A., Vradenburg, S., Fread K., Puleo E., Jin L., Yipkin C., Deppmann C., and Zunder E. (2022). Single-cell mass cytometry analysis of somatosensory development. Nature Neuroscience. 16:34:06. <a href="https://doi.org/10.1038/s41593-022-01181-8"><span class="s1" style="text-decoration-line:underline;color:#103cc0;">https://doi.org/10.1038/s41593-022-01181-8</span></a></p><p><a href="https://doi.org/10.1038/s41593-022-01181-8"><span class="s1" style="text-decoration-line:underline;color:#103cc0;"></span></a>4. Kuhn K., Edamura K., Bhatia N., Cheng I., Clark S., Haynes C., Heffner D., Kabir F., Velasquez J., Spano A., Deppmann C., and <strong>Keeler A</strong>. (2020). Molecular dissection of TNF bidirectional signaling reveals both cooperative and antagonistic interactions with p75 neurotrophic factor receptor in axon patterning. Mol Cell Neurosci. 103:103467.</p><p>5. Barford, K., <strong>Keeler, A</strong>., McMahon, L., McDaniel, K., Yap, C.C., Deppmann, C.D., and Winckler, B. (2018). Transcytosis of TrkA leads to diversification of dendritic signaling endosomes. Sci. Rep. 8, 4715.</p><p>6. <strong>Keeler, A.B.*</strong>, Suo, D.*, Park, J., and Deppmann, C.D. (2017). Delineating neurotrophin-3 dependent signaling pathways underlying sympathetic axon growth along intermediate targets. Mol. Cell. Neurosci. 82, 66–75.</p><p>7. Molumby, M.J.*, <strong>Keeler, A.B.*</strong>, and Weiner, J.A. (2016). Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity. Cell Rep. 15, 1037–1050.</p><p>8.<strong> Keeler, A.B.</strong>, Schreiner, D., and Weiner, J.A. (2015). Protein Kinase C Phosphorylation of a γ-Protocadherin C-terminal Lipid Binding Domain Regulates Focal Adhesion Kinase Inhibition and Dendrite Arborization. J. Biol. Chem. 290, 20674–20686.</p><p>*Equal contribution​​​<br></p> | | <p>​<span class="s1" style="text-decoration-line:underline;"><a href="https://keelerlab.bio.udel.edu/">https://keelerlab.bio.udel.edu/</a></span><br></p> | <img alt="" src="/Images%20Bios/Austin%20Keeler.jpg" style="BORDER:0px solid;" /> | |