Skip to Main Content
Sign In
Visit Apply Give


Image Picker for Section 0



209Jia L. Song, Ph.D. <p>Associate Professor </p>(302) 831-2794 (302) 831-2281 323 Wolf Hall 018 Wolf Hall Department of Biological Sciences Wolf Hall University of Delaware Newark, DE 19716 <ul> <li><strong>B.S.</strong> - Cornell University </li><li><strong>Ph.D.</strong> - University of Washington </li><li><strong>Postdoctoral</strong> - Brown University </li></ul><ul><li>BISC 415/615 Developmental Biology</li><li>BISC 412 Developmental & Molecular Lab</li></ul> <p><img src="/content-sub-site/PublishingImages/people/jsong/jsong-urchins.jpg" class="ms-rtePosition-2" alt="Sea urchins induced to shed gametes. Sperms are white and eggs are yellow." style="margin:5px;" />The potential for forming a new organism begins at fertilization, when the sperm meets the egg. Across species from the worm to the human, development of the newly fertilized egg to a juvenile or an adult requires the careful regulation of cell growth, differentiation, and morphogenesis. Different cell types make different sets of proteins, even when their genomes are identical. What makes each cell type unique is a direct result of differential gene expressions mediated by transcription factors and signaling molecules in response to chemicals and proteins in the cell and the environment. Dysregulation of important genes involved in developmental decisions can lead to human diseases. Our research addresses one of the fundamental questions in developmental biology: How are genes regulated during early development?</p> <p>My laboratory investigates the regulatory roles of microRNAs (miRNAs) in early development. miRNAs are a class of non-coding RNA molecules that have recently been discovered to repress gene expressions in animal cells. miRNAs are critical for many aspects of life, including the development of an organism and physiological functions of cells and tissues.</p> <p>We established the use of the sea urchin embryo as an animal model to elucidate how miRNAs control gene regulatory networks (GRNs) and signaling transduction pathways that drive developmental programs, pattern formation, and cell motility in an embryo. The sea urchin model has an exceptionally well-studied GRN and most of its miRNA families consist of a single species, which makes it amenable to unique, powerful functional analysis. Integrating state-of-the-art proteomics, bioinformatics, and molecular analyses, my research has revealed the function of miRNAs as integrators of developmental pathways. Since miRNAs, GRNs, and signaling pathways are evolutionarily highly conserved, our research serves as a paradigm of understanding the general function of miRNAs as important integrators of GRNs and signaling pathways to power development in making a functional embryo.</p><p><u><span style="font-size:14px;"><span style="font-family:arial, helvetica, sans-serif;">Our research areas<strong><em> </em></strong>are:</span></span></u></p> <p><span style="font-family:arial, helvetica, sans-serif;"><span style="font-size:14px;"><strong>1.<em> miRNAs modulate signaling transduction pathways to impact early development</em></strong></span></span></p> <p><span style="font-size:14px;"><span style="font-family:arial, helvetica, sans-serif;">Signaling transduction pathways are critical in early development, yet the role of miRNA  regulation of these pathways is still lacking. Both Wnt and Delta/Notch signaling pathways are evolutionarily highly conserved and important in cell specification and differentiation. The goal of this project is to understand how miRNAs regulate these signaling pathways, and the impact of miRNA regulation in development.</span></span></p> <p><span style="font-size:14px;"><span style="font-family:arial, helvetica, sans-serif;"><strong><em>2. miRNAs suppress genes of cell motility to control embryonic organization</em></strong></span></span></p> <p><span style="font-size:14px;"><span style="font-family:arial, helvetica, sans-serif;">We have previously established that microRNA-31 (miR-31) is one of the four critical miRNAs necessary to rescue developmental defects induced by the knockdown of miRNA biogenesis enzymes, indicating its importance in early development. As part of our goal to define miR-31’s function in the embryo, we bioinformatically searched for miR-31 targets genome-wide and compared the proteome of normal and miR-31 knockdown embryos, since animal miRNAs typically mediate their gene targets by translational repression. From these analyses, we identified that several genes that control cell motility were regulated by miR-31, including a small GTPase Arf6. We have shown that Arf6 protein was increased in miR-31 knockdown embryos compared to the control, indicating that miR-31 suppresses Arf6. Based on these results, we hypothesized that miR-31 suppresses genes that mediate the mechanics of cell motility. </span></span></p> <p><span style="font-size:14px;"><span style="font-family:arial, helvetica, sans-serif;"><strong>3.<em> miRNAs cross-regulate gene regulatory networks and signaling pathways</em></strong></span></span></p> <p><span style="font-family:arial, helvetica, sans-serif;"><span style="font-size:14px;">miR-31 plays a key role in development and diseases by regulating genes important for cell differentiation, proliferation, apoptosis, and cell motility. However, miR-31 has been examined mostly in the context of cancer, and its role in development needs to be better understood. The goal of this project is to advance our understanding of how miR-31 integrates and cross-regulates GRNs and signaling pathways to impact development. </span></span></p> <p> Current</p><p> </p><ul> <li><strong>Nina Sampilo</strong>-PhD , MBA </li><li><strong>Kalin Konrad</strong>-PhD </li><li><strong>Carolyn Remsburg</strong>-PhD </li><li><strong>Liddy McCulla</strong>-Undergraduate Researcher</li><li><strong>Cullen Kisner</strong>-Undergraduate Researcher</li></ul><p> </p><p>Past</p><p> </p><ul> <li>Nadezda Stepicheva - Ph.D. 2016 </li><li>Priscilla Kobi - MS, 2016 </li><li>Santiago Suarez - MS, 2015 </li><li>Priya Nigam - MS, 2013 </li><li>Archana Siddam -MS, 2012 </li><li>Undergraduate researcher with Thesis: Lydia Bonar (2011), Megan Dumas (2013), Kelsie Landis (2014), Carissa McKinney (2014), Tyler McCann (2016), Alexander George (2018), Jacob Duggan (2019) </li></ul><p> </p><p><a href="/content-sub-site/Documents/People/jsong/Mentored%20Student%20Awards%20and%20Honors02012021.pdf">Mentored Student Awards</a><br></p><p></p><ul><li>Carolyn Remsburg, Michael Testa, and <strong>Jia L. Song</strong> (2021) <a href="/content-sub-site/Documents/People/jsong/Remsburg_Cell_and_Dev2021.pdf">Rab35 regulates skeletogenesis and gastrulation by facilitating actin remodeling and vesicular trafficking</a>. <em>Cells and Developemnt (Mechanisms of Development). </em><em>In Press.</em></li><li>Nina Faye Sampilo, Nadezda Stepicheva, and <strong>Jia L. Song</strong> (2021) <em><a href="/content-sub-site/Documents/People/jsong/Sampilo%20et%20al.%20DB%202021.pdf">microRNA-31 regulates skeletogenesis by direct suppression of Eve and Wnt1</a></em><em>. Developmental Biology. </em>Jan 20;472:98-114. doi: 10.1016/j.ydbio.2021.01.008. </li><li>Carolyn Remsburg, Kalin Konrad, Nina Faye Sampilo, and <strong>Jia L. Song</strong> (2019). <a href="/content-sub-site/Documents/People/jsong/Remsburg_etal_2018.pdf">Functional analysis of microRNAs</a>. <em>Methods in Cell Biology</em>. Echinoderms part B. Volume 151.</li><li> Zeinab Fereshteh, Skye A. Schmidt, Amal A Al-Dossary, Monica Accerbi, Cecili Arighi, Julie Cowart, <strong>Jia L. Song</strong>, Pamela J. Green, Kyungmin Choi, Soonmoon Yoo, and Patricia A. Martin-DeLeon. (2018) <a href="/content-sub-site/Documents/People/jsong/Fereshteh_etal_2018.pdf">Murine oviductosomes (OVS) microRNA profiling during the estrous cycle: Delivery of OVS-borne microRNAs to sperm where miR-34c-5p localizes at the centrosome</a>. <em>Scientific Reports. </em>Oct 31:8(1): 16094. doi: 10.1038/s41598-018-34409-4.</li><li> Nina Faye Sampilo1, Nadezda A. Stepicheva1,3, Syed Aun Murtaza Zaidi1, Lingyu Wang2, Wei Wu2, Athula Wikramanayake2,and  <strong>Jia L. Song</strong><strong>1</strong>* (2018).<a href="/content-sub-site/Documents/People/jsong/Sampilo_etal_Development_2018.pdf">Inhibition of microRNA suppression of <em>Dishevelled</em> results in Wnt pathway associated developmental defects</a>. <em>Development</em>, Nov2. pii: dev.167130. doi: 10.1242/dev.167130 .</li><li> <strong>Jia L. Song</strong> and Michael Testa (2018). <a href="/content-sub-site/Documents/People/jsong/Song_Testa_2018_Rab35%20chapter.pdf">The function of Rab35 in development and disease</a>. Peripheral Membrane Proteins Shihori Tanabe, IntechOpen, Jul. 25.doi: 10.5772/intechopen.75168.</li><li> Stepicheva, N., M. Dumas, P. Kobi, J. Donaldson, and <strong>J.L. Song</strong> (2017) <a href="/content-sub-site/Documents/People/jsong/Stepicheva_et_al_2017%20published.pdf">The small GTPase Arf6 regulates sea urchin cellular morphogenesis.</a><em>Differentiation.</em> Feb. 2.doi: 10.1016/j.diff.2017.01.003. PMID: 28188999</li><li> Stepicheva, N.A. and <strong>J.L. Song</strong> (2016) <a href="/content-sub-site/Documents/People/jsong/Stepicheva_et_al-2016-Molecular_Reproduction_and_Development.pdf">Function and regulation of microRNA-31 in development and disease.</a><em>Molecular Reproduction and Development</em>. Jul 12. doi: 10.1002/mrd.22678. PMID:27405090</li><li> Stepicheva, N.A. and <strong>J.L. Song </strong>(2015) <a href="/content-sub-site/Documents/People/jsong/Stepicheva%20and%20Song%202015_Development.pdf">miR-31 modulates skeletogenic cell patterning in the sea urchin embryos.</a><em>Development.</em>Sep 23. pii: dev.127969. PMID:26400092</li><li> <strong>Song, J.L</strong>, P. Nigam, S. Tektas, and E. Selva (2015) <a href="/content-sub-site/Documents/People/jsong/Song%20et%20al_Cellular%20Signaling2015.pdf">microRNA regulation of Wnt signaling pathways in development and disease.</a><em>Cellular Signaling.</em> 2015 Jul;27(7):1380-1391. doi: 10.1016/j.cellsig.2015.03.018. Epub 2015 Apr 2. Review. PubMed PMID: 25843779; PubMed Central PMCID: PMC4437805.</li><li> Stepicheva, N, Nigam P.A., Siddam A., Peng, CF, <strong>J. L. Song</strong> (2015) <a href="/content-sub-site/Documents/People/jsong/1-s2.0-S0012160615000160-main.pdf">microRNAs regulate β-catenin of the Wnt signaling pathway in early sea urchin development.</a><em>Developmental Biology</em>. Jan 19. Pii: S0012-1606 (15)00016-0. Doi:10.1016/j.ydbio.2015.01.008. PMID: 25614238.</li><li> <strong>Song, J.L.</strong> (2014) <a href="/content-sub-site/Documents/People/jsong/Song_ARF6mrd22326.pdf">Broad distribution of ARF6 in somatic and germ cells of the sea urchin ovary.</a><em>Molecular Reproduction and Development</em>. March 29. doi: 10.1002/mrd.22326. PMID:24687463</li><li> Stepicheva, N. and <strong>J.L. Song</strong>. (2014) <a href="/content-sub-site/Documents/People/jsong/jove-protocol-50841-complete.pdf">High throughput microinjections of sea urchin zygotes.</a><em>Journal of Visualized Experiments</em>.  Jan 21;(83). doi: 10.3791/50841.</li><li> Yajima, M., Gustafson, E.A., <strong>J.L. Song</strong>, and G.M. Wessel. (2013) <a href="/content-sub-site/Documents/People/jsong/dvdy24096.pdf">Piwi regulates Vasa accumulation during embryogenesis in the sea urchin.</a><em>Developmental Dynamics</em>. Nov 12. doi: 10.1002/dvdy.24096.</li><li> Oulhen N, Yoshida T, Yajima M, <strong>Song J.L.</strong>, Sakuma T, Sakamoto N, Yamamoto T, Wessel GM. (2013) <a href="/content-sub-site/Documents/People/jsong/1-s2.0-S0012160613000377-main.pdf">The 3'UTR of nanos2 directs enrichment in the germ cell lineage of the sea urchin.</a><em>Developmental Biology</em>. Jan 25. doi: 10.1016/j.ydbio.2013.01.019.</li><li> <strong>Song J.L</strong>. and Wessel GM.(2012) <a href="/content-sub-site/Documents/People/jsong/22073_ftp.pdf">The forkhead transcription factor FoxY regulates Nanos.</a><em>Molecular Reproduction and Development</em>. Oct; 79(10):680-8.</li><li> <strong>Song J.L.</strong>, Stoeckius M, Maaskola J, Friedlaender M, Stepicheva N, Juliano C, Lebedeva S, Thompson W, Rajewsky N, Wessel GM. (2012) <a href="/content-sub-site/Documents/People/jsong/1-s2.0-S0012160611013972-main.pdf">Select microRNAs are essential for early development in the sea urchin.</a><em>Developmental Biology</em>. 362(1):104-13. Epub 2011 Dec 3.</li><li> Wessel GM, Juliano CE, Wong J, Gustafson E, <strong>Song J.L</strong>. (2009) <a href=",%202010.pdf">Molecular markers of oocyte and primordial germ cell development in the sea urchin.</a> Echinoderms. 2009:517‐528.</li><li> Voronina, E, M. Lopez, C. Juliano, E. Gustafson, <strong>J.L. Song</strong>, C, Extavour, S. George, P. Oliveri, D. McClay, and G. M. Wessel (2008) <a href="/content-sub-site/Documents/People/jsong/1-s2.0-S001216060701559X-main.pdf">Vasa protein expression is restricted to the small micromeres of the sea urchin, but is inducible in other lineages early in development.</a><em>Developmental Biology</em>. 314(2):276–286.</li><li> <strong>Song J.L.</strong>, Wessel GM. (2007) <a href="/content-sub-site/Documents/People/jsong/Song_et_al-2007-Developmental_Dynamics.pdf">Genes involved in the RNA interference pathway are differentially expressed during sea urchin development.</a><em>Developmental Dynamics</em>. 236(11):3180–3190.</li><li> Sodergren E, Weinstock GM, Davidson EH, et al. (2006) <a href="/content-sub-site/Documents/People/jsong/941.full.pdf">The genome of the sea urchin Strongylocentrotus purpuratus.</a><em>Science</em>.314(5801):941–952.</li><li> <strong>Song J.L</strong>., Wong J.L., Wessel GM. (2006) <a href="/content-sub-site/Documents/People/jsong/1-s2.0-S0012160606010554-main.pdf">Oogenesis: single cell development and differentiation.</a><em>Developmental Biology</em>. 300(1):385–405.</li></ul><p></p><h2>Education Outreach<br></h2><p> <br> </p><p> <img src="/content-sub-site/PublishingImages/people/jsong/DCM%20outreach-grad%20student.png" alt="Education outreach at the Delaware Children Museum" style="margin:5px;" /> <br> </p><p> <br> <strong>Education outreach at the Delaware Children Museum.</strong><br>(A) Graduate student Stepicheva shows child and parent our animals for developmental studies.<br>(B) A child checks out the animals.<br><a href=""></a><br></p><p> <img src="/content-sub-site/PublishingImages/people/jsong/children%20in%20action%202.png" alt="Collaboration with Professor Gallo-Fox in Early Childhood Education" style="margin:5px;" /> <br> <strong>Collaboration with Professor Gallo-Fox in Early Childhood Education.</strong><br><a href="/content-sub-site/Documents/People/jsong/Dec%202016%20ECE%20microscope%20directions.pdf"><br><br>Early Childhood Microscope Building Instructions</a></p><p> </p><img alt="" src="/Images%20Bios/jsong-lg.jpg" style="BORDER:0px solid;" />

Page Settings and MetaData:
(Not Shown on the Page)
Page Settings
MetaData for Search Engine Optimization
  • Department of Biological Sciences
  • 105 The Grn, Room 118 Wolf Hall
  • Newark, DE 19716, USA
  • University of Delaware
  • Phone: 302-831-6977